MMT
Master of Science in Manufacturing Technology

Module description
November 2021

TU Dortmund University
Dortmund, Germany
Dear prospective MMT student,

With this brochure, we would like to give you the opportunity to inform yourself in detail about the curriculum of the international master’s degree program in Manufacturing Technology (MMT) offered by TU Dortmund University, Germany.

You will find a complete overview of the two-year course program including detailed module descriptions and further useful information.

Should any questions remain unanswered, feel free to contact the MMT Office (see contact details below). We will be glad to help.

Your MMT Office

MMT Office
Faculty of Mechanical Engineering
TU Dortmund University
Leonard-Euler Str. 5
44227 Dortmund

www.mmt.mb.tu-dortmund.de
mmt.mb@tu-dortmund.de

Phone: +49 231 755 6462
Fax: +49 231 755 2706
<table>
<thead>
<tr>
<th></th>
<th>1st Semester</th>
<th>2nd Semester</th>
<th>3rd Semester</th>
<th>4th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Module 1</td>
<td>Module 1: Machining Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory Module 2</td>
<td>Module 2: Materials Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory Module 3</td>
<td>Module 3: Forming Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Module 1</td>
<td>Elective 1 – Part 1 5 CP</td>
<td>Elective 1 – Part 2 5 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Module 2</td>
<td>Elective 2 – Part 1 5 CP</td>
<td>Elective 2 – Part 2 5 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Module 3</td>
<td>Elective 3 – Part 1 5 CP</td>
<td>Elective 3 – Part 2 5 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Work</td>
<td>Laboratory Work 10 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Work</td>
<td>Project Work 10 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary</td>
<td>Interdisciplinary 10 CP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td></td>
<td></td>
<td>Master’s Thesis 30 CP</td>
<td></td>
</tr>
<tr>
<td>Credit Points</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Total CP</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Listed below are the elective modules, from which students have to choose to gain a total of 30 credits. Please mind that the range of elective modules may change.

Module 4:	Automation and Robotics
Module 5:	Simulation Methods in Solid Mechanics
Module 8:	Advanced Simulation Techniques in Metal Forming
Module 9:	Measurement Engineering
Module 10:	Fatigue Behaviour
Module 17:	Machining Process Simulation
Module 20:	Topics in Manufacturing Technology
Module 22:	Basics of Materials and Technology
On the following pages, all compulsory and elective modules are described in further detail.

Abbreviations used:
L = Lecture
E = Exercise
P = Practical Work
SWS = Semesterwochenstunden (contact hours per week per semester)
Module 1: Machining Technology

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>2 semesters</td>
<td>1st/2nd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machining Technology I</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Machining Technology II</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
</tr>
</tbody>
</table>

2 Language of the course

English

3 Content

Element 1 covers topics like machining processes, dry and MQL machining and process planning. These are discussed in detail with respect to machining processes with both defined and undefined cutting edge.

Element 2 focuses on process evaluation under consideration of process reliability especially with regard to the use of process resources. The flow of information parallel to the machining processes as well as strategies for process control and for the simulation of production in industrial machining environments are discussed. Furthermore, management and logistics for cutting tools are presented.

4 Competence

The module provides students with detailed knowledge of different, industrially relevant machining processes. Furthermore, social as well as the communication skills will be imparted and improved. Additional aims of this module are the development of team spirit and the idea of network oriented thinking.

5 Examination

Examination details are presented at the beginning of the lecture.

6 Form of the Examination and Ratings

- Module examination
- Partial performances (two partial performances)

7 Prerequisites

None

8 Module Type and Usability of the Module

Compulsory module

9 Representative of the Module

Prof. Dr.-Ing. Dirk Biermann

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 2: Materials Technology (MMT)

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>2 semesters</td>
<td>1st/2nd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plastics Technology</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
</tr>
<tr>
<td>2</td>
<td>Materials Technology II</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
</tr>
</tbody>
</table>

1. **Language of the course**
 - English

2. **Content**
 - The module “Materials Technology” offers students to gain a deeper knowledge in the area of metallic materials and polymer materials as well as their technologies. This course provides students with a detailed knowledge base concerning different materials, their production and finishing process as well as their specific characteristics and fields of application. In the field of polymers, one focus is on the most important production processes and their design methods for plastic components. Additionally, processing of plastic components will be discussed in detail. Within this context, tools used to manufacture application-oriented plastic components will be investigated as well. Furthermore, this module provides knowledge concerning metallic materials, special materials, as well as possible phase- and alloy formations. A solid knowledge base concerning the mechanical behavior, with a special focus on fracture mechanisms and wear mechanisms will be provided. These basics are supplemented by discussing technological processes to join components and investigating surface treatments for relevant materials.

3. **Competence**
 - This course introduces students to the field of metallic materials and polymers, including their typical characteristics and field of application. They gain a deeper knowledge about different materials, with a special focus on their application-oriented potential. Furthermore, this course will enhance the ability of students to evaluated construction materials by using different interdisciplinary methods in order to choose a material for a specific field of application. It is highly recommended to take the elective course “Basics of Materials and Technology” before.

4. **Examination**
 - Plastics Technology: Written exam
 - Materials Technology II: Seminar / Essay and Presentation

5. **Form of the Examination and Ratings**
 - Module examination
 - Partial performances (two partial performances)

6. **Prerequisites**
 - None

7. **Module Type and Usability of the Module**
 - Compulsory module

8. **Representative of the Module**
 - Prof. Dr.-Ing. Dipl.-Wirt.Ing. Wolfgang Tillmann
 - Prof. Dr. Ulrich A. Handge

9. **Responsible Faculty**
 - Faculty of Mechanical Engineering (7)
Module 3: Forming Technology (MMT)

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>2 semesters</td>
<td>1st/2nd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forming Technology I</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Forming Technology II</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Language of the course
English

3 Content

This module provides an advanced knowledge of the fundamentals of forming technology and the corresponding forming machines and processes. In addition, theoretical fundamentals with special emphasis on analytical and finite element methods are discussed.

The first part of the module deals with bulk forming processes. After providing the basics of metal forming related to the materials, the theory of plasticity, the material characterization and the analytical methods, example applications like rolling, forging, cold forging, bar extrusion, and shear forming are shown and further knowledge concerning forming machines and energy saving are given.

The second part of the module deals with sheet metal forming processes. First the fundamentals of sheet metal forming are treated, then some applications like bending, deep drawing, roll forming, incremental forming, hydroforming, hot sheet metal forming, impulse forming, and cutting and joining by forming are discussed in detail.

4 Competence

With the successful participation in the module, students have a broad understanding of the processes of metal forming and related machinery and tools. The students are able to identify special problems of metal forming technology, treat them and offer solutions. They possess a broad understanding of components, measurement and control systems, and automation techniques. The lecture, the accompanying essays, project work, exercises, live experiments, and laboratory visits extend students’ analytical thinking, communication and team-work skills.

5 Examination

After each element there is a mandatory test in the form of a written exam work. The test lasts max. 120 minutes in each case.

6 Form of the Examination and Ratings

- ✔️ Module examination
- ✗ Partial performances (two partial performances)

7 Prerequisites

None

8 Module Type and Usability of the Module

Compulsory module

9 Representative of the Module

Prof. Dr.-Ing. Dr.-Ing. E.h. A. Erman Tekkaya

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 4: Automation and Robotics

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>2 semesters</td>
<td>1st/2nd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fundamentals of Robotics</td>
<td>5</td>
<td>60h in course, 90h self-study</td>
</tr>
<tr>
<td>2</td>
<td>Automation and Handling Systems</td>
<td>5</td>
<td>45h in course, 105h self-study</td>
</tr>
</tbody>
</table>

2 Language of the course

English

3 Content

The module is intended to impart knowledge in the field of automation and robotics. The first semester focuses on the robot as one key element of flexible automation and production engineering. In detailed topics such as robot kinematics, hardware components of robots, robot control, motion control and path planning especially in robot based handling und manufacturing tasks, programming of robots (online/offline) as well as the reachable accuracy of robot based movements and processes will be discussed in lectures and practical exercises. The second semester is basically split up into two main topics: It starts with an introduction to non-robot components and machines that are important for the implementation of automated production systems. Discussed topics are among other things basic hardware components, simple handling machines and supporting peripheral devices as well as industrial control systems (PLC). The second part focuses on the term “system”. On the basis of practical examples, the interaction of the individual components of automated systems and respective robot systems will be systematically analyzed. Based on the results of the analysis, a systematic approach to the planning and implementation of automated systems is imparted.

4 Competence

After a successful completion of the module, students have acquired knowledge about how to design, program, use and operate an robot based production cell or line as well as automated manufacturing facility without any robot. This knowledge enables the students to analyze a broad range of tasks inside the area of automation and robotics, to structure the tasks and to solve the task in a systematic way.

5 Examination

The exam consists of two written tests (60 min), one for each element of the module

6 Form of the Examination and Ratings

- Module examination
- Partial performances

7 Prerequisites

None

8 Module Type and Usability of the Module

Elective module

9 Representative of the Module

<table>
<thead>
<tr>
<th>PD Dr.-Ing. Jobst Bickendorf</th>
<th>Responsible Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Faculty of Mechanical Engineering (7)</td>
</tr>
</tbody>
</table>
Module 5: Simulation Methods in Solid Mechanics

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>2 semesters</td>
<td>1st/2nd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1. **Module Structure**

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Finite Element Method I (FEM I)</td>
<td>L(2)+E(1)+P(0,5)</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Finite Element Method II (FEM II)</td>
<td>L(2)+E(1)+P(0,5)</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Language of the course**

English

3. **Content**

The module gives an introduction to recent methods for the simulation of deformable solids and focuses on the finite element method and its applications to engineering problems. The first part presents the essential cornerstones for the solution of mechanical boundary value problems. It covers, amongst others, the discretization in terms of interpolation functions, the master element concept, strong and weak formulations of the quasi-static equilibrium state as well as the construction of discrete boundary value problems of linear elasticity and heat transfer. The second part extends the first one to nonlinear material behavior, including visco-elasticity and elasto-plasticity. Moreover, it deals with incompressible materials and elasto-dynamic boundary value problems. To this end, related methods known from engineering mathematics such as the solution of nonlinear systems of equations are discussed in detail.

4. **Competence**

After successfully finishing this module, students can analyze complex mechanical systems and model and program relevant, technical problems. This implementation enables the students to simulate basic problems in the field of applied mechanics. Moreover, the students can apply alternative methods and approaches to engineering and scientific problems, compare them, analyze their advantages and limitations and choose a preferred method depending on the application of interest.

5. **Examination**

Nr. 1: Generation of a FE program for linear problems at small strains
Nr. 2: Generation of a FE program for non-linear problems at small strains
Includes for each part: Program generation, report writing, oral or written exam

6. **Form of the Examination and Ratings**

- Module examination
- Partial performances (two partial performances)

7. **Prerequisites**

Strength of materials, engineering mathematics especially numerical methods

8. **Module Type and Usability of the Module**

Elective module

9. **Representative of the Module**

Prof. Dr.-Ing. Andreas Menzel

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 8: Advanced Simulation Techniques in Metal Forming

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>2nd semester</td>
<td>5</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Simulation Techniques in Metal Forming</td>
<td>L(2.5)+E(1)</td>
<td>5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

40h in course, 110h self-study

Language of the course

English

Content

Relevant aspects for the analysis of forming processes with the finite element method (FEM) are introduced. The different physical sources of non-linearity, such as the material behavior, finite deformations, and boundary conditions, are discussed. The theoretical background of suitable numerical methods for the solution of non-linear partial differential equations is presented. The aim here is to raise the students’ awareness of the underlying physics and numerical methods when they use commercial FEM codes for process simulation. The students learn to apply the theoretical concepts in the exercise, in which forming processes are analyzed using commercial FEM code. Concepts that are covered in particular are explicit and implicit time integration, changing boundary conditions as well as rigid-plastic and elastic-plastic material behavior.

Competence

Students acquire advanced knowledge of the FEM for the simulation of forming processes. They are able to generate a model of a forming process, perform calculations with this model, and, finally, do a critical evaluation of the calculation results. Method competence is acquired by learning structured thinking and reducing problems to smaller subproblems, which are easier to solve. Moreover, students learn to present results of their simulations.

Examination

Written exam, simulation project

Form of the Examination and Ratings

- Module examination
- Partial performances

Prerequisites

Basic knowledge of FEM (MMT module 5 or equivalent recommended); Knowledge of strength of materials or introduction to continuum mechanics

Module Type and Usability of the Module

Elective module

Representative of the Module

Prof. Dr.-Ing. habil. Andreas Menzel

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 9: Measurement Engineering

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>1st semester</td>
<td>5</td>
<td>150 h</td>
</tr>
</tbody>
</table>

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measurement Engineering</td>
<td>L(2,5)+E(1)</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
</tr>
</tbody>
</table>

2 Language of the course

English

3 Content

This course introduces students to the measurement chain in any manufacturing process by illustrating the path of the measurement signal stepwise from recording to measuring the variable. The course conveys basic concepts and principles of measurement engineering, from measurement methods and sensors in different production fields to data processing by statistical analysis of the measured output to design of experiments. Then the metrology concepts in production measurement technology are treated followed by the application of learned techniques in materials and component testing. Data acquisition and control is an integral part of the course. In interactive lessons, students learn to use the visual programming environment LabVIEW to visualize, create, and code engineering measurement systems. Finally, students are introduced to statistical techniques used in test planning, analysis, and optimization of engineering systems.

4 Competence

Students master basic theoretical and mathematical concepts for process and product optimized selection of appropriate measurement methods and transducers, of measurement in manufacturing and in materials and component testing, of data acquisition and processing and for statistical analysis and design of experiments. Students are able to identify specific problems and possible solutions to deal with this offer. Accompanying exercises expand the students’ competencies by improving their analytical thinking, communication, and team skills. Furthermore, they are prepared for further self-studies.

5 Examination

Written or oral exam

6 Form of the Examination and Ratings

- ✔ Module examination
- □ Partial performances

7 Prerequisites

None

8 Module Type and Usability of the Module

Elective module

9 Representative of the Module

<table>
<thead>
<tr>
<th>Prof. Dr.-Ing. Frank Walther</th>
</tr>
</thead>
</table>

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 10: Fatigue Behaviour

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>2nd semester</td>
<td>5</td>
<td>150 h</td>
</tr>
</tbody>
</table>

1. **Module Structure**

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fatigue Behaviour</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

40h in course, 110h self-study

2. **Language of the course**

English

3. **Content**

In addition to materials science aspects of fatigue behaviour of metals, the standard of knowledge on relationship between microscopic structure and macroscopic properties is imparted. The characterization of fatigue behaviour is performed by mechanical, thermal, electrical and magnetic measurement techniques and transducers. Current fatigue damage accumulation hypothesis and life time calculation approaches are presented. All the stages of fatigue life - crack initiation, crack propagation and final failure - are dealt with the corresponding mechanisms. To understand and correlate the mathematical models in material fatigue and experimental studies, finite element simulations are introduced. Abaqus and nCode programmes are used for understanding of classical fatigue models and promotes to develop the application-oriented models. Tutorials are designed to simulate fatigue life of different industrial components.

4. **Competence**

Students gain assessment competence for the independent selection of engineering materials on the basis of given component requirements as well as for the targeted use of introduced methods for material characterization. Students’ cross-disciplinary thinking in overall contexts is encouraged and students are able to identify specific problems and possible solutions to deal with this offer. Through accompanying exercises students expand their analytical skills and develop teamwork and communication skills as well as are prepared for further self-studies.

5. **Examination**

Written or oral exam

6. **Form of the Examination and Ratings**

- ☑ Module examination
- ☐ Partial performances

7. **Prerequisites**

None

8. **Module Type and Usability of the Module**

Elective module

9. **Representative of the Module**

Prof. Dr.-Ing. Frank Walther

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 11: Laboratory Work (MMT)

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>3rd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1. Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Laboratory Work</td>
<td>P(7)</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

2. Language of the course

English

3. Content

The laboratory work specifically involves experimental research work. The specific objectives are defined by the chairs where the laboratory work is performed. The laboratory work is done in groups. Before the actual laboratory work, the experiments need to be prepared. This means that students have to make sure they have an adequate knowledge of the theoretical foundations and practical implementation of the experiment. Students can choose freely the chair or chairs and discipline for their laboratory work, depending on availability. The experimental contents are provided by the individual chairs.

4. Competence

Students acquire practical skills by doing hands-on experiments. Furthermore, they gain technical and method competence by performing theoretical and independent experiment preparation.

5. Examination

Written or oral exam, written report, presentation and discussion. The type of the exams is announced at the beginning of the respective element. The module may be completed with a single course worth 10 CP or a combination of several single courses each worth less than 10 CP. The grade of the module is calculated by using the credit point weighted average of the single courses. Even though the total credit points of the single courses may be higher than 10, the module will only be counted as 10 credit points.

6. Form of the Examination and Ratings

- Module examination
- Partial performances

7. Prerequisites

None

8. Module Type and Usability of the Module

Compulsory module

9. Representative of the Module

<table>
<thead>
<tr>
<th>Responsible Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent on the examiner</td>
</tr>
<tr>
<td>Faculty of Mechanical Engineering (7)</td>
</tr>
</tbody>
</table>
Module 12: Scientific Project Work (MMT)

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>3rd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scientific Project Work + Oral Presentation</td>
<td></td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

2 Language of the course

English

3 Content

The Scientific Project involves a study-accompanying homework in the scope of 10 CP in a team work format. Each team member has to prepare an independent part proving their individual performance for evaluation by the examiner. Within four weeks after the submission of the homework, each student has to show the results by giving a presentation. Scientific Project Works are offered by the Faculty.

4 Competence

By preparing a scientific project work and doing an oral presentation, students acquire the competence to do scientific work and to apply scientific knowledge as well as gain technical and method competence. Furthermore, by working in intercultural teams, students acquire teamwork skills, presentation competence, etc., which promote the social and intercultural skills, i.e., professional key skills.

5 Examination

Written exam, presentation, assignment, seminar, or oral exam. The type of the exams is announced at the beginning of the respective element. The module may be completed with a single course worth 10 CP or a combination of several single courses each worth less than 10 CP. The grade of the module is calculated by using the credit point weighted average of the single courses. Even though the total credit points of the single courses may be higher than 10, the module will only be counted as 10 credit points.

6 Form of the Examination and Ratings

- Module examination
- Partial performances

7 Prerequisites

None

8 Module Type and Usability of the Module

Compulsory module

9 Representative of the Module

Dependent on the examiner

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 13: Interdisciplinary Qualification (MMT)

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>3rd semester</td>
<td>10</td>
<td>300 h</td>
</tr>
</tbody>
</table>

1 **Module Structure**

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interdisciplinary Qualification</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

2 **Language of the course**

English, other languages if offered

3 **Content**

The module „Interdisciplinary Qualification (non-technical elective course) can be offered by any academic unit of TU Dortmund University and must meet the following requirements:

- The content must be non-technical.
- The module is completed with 10 CP and may be composed of one single course or several courses of different departments. The module is therefore completed either with partial performances or a module exam.

A variety of courses are offered at TU Dortmund University, some of which are listed below:

- Culture and Technology
- Scientific Writing
- Teambuilding
- Business & Legal English Today
- Business English Today I & II
- Technical English
- German as a Foreign Language

4 **Competence**

Completing elective modules from the social sciences, humanities, or economics range allows students to be introduced to and become familiar with methods applied in other disciplines of science. In this way, students improve their language, social, and intercultural as well as diversity skills.

5 **Examination**

Written exam, presentation, assignment, seminar, or oral exam. The type of the exams will be announced at the beginning of the elected element.

The module may be completed with a single course worth 10 CP or a combination of several single courses each worth less than 10 CP. The grade of the module is calculated by using the credit point weighted average of the single courses. Even though the total credit points of the single courses may be higher than 10, the module will only be counted as 10 credit points.

6 **Form of the Examination and Ratings**

- Module examination
- Partial performances

7 **Prerequisites**

None

8 **Module Type and Usability of the Module**

Compulsory module

9 **Representative of the Module**

Responsible Faculty: Faculty of Mechanical Engineering (7)
Module 14: Master’s Thesis

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>4th semester</td>
<td>30</td>
<td>900 h</td>
</tr>
</tbody>
</table>

1. **Module Structure**

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Master’s Thesis with oral Presentation</td>
<td>30</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

2. **Language of the course**

English

3. **Content**

The master's thesis is a scientific work that concludes the master program. It aims to demonstrate that the candidate is able to solve a problem independently within a period of one semester by applying scientific methods.

4. **Competence**

By completing the master's thesis, students demonstrate their ability to perform a scientific work independently, to apply scientific knowledge, to solve engineering problems, and to perform a final oral presentation. Not only technical but also method competence shall be acquired. By preparing and performing the oral presentation, students also develop key skills in decision making, taking responsibility and having self-confidence.

5. **Examination**

Master's thesis (80%) and presentation (20%)

6. **Form of the Examination and Ratings**

- Module examination
- Partial performances

7. **Prerequisites**

In order to start the master's thesis, the students must have at least 80 ECTS credit points.

8. **Module Type and Usability of the Module**

Compulsory module

9. **Representative of the Module**

Dependent on the instructor

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 17: Machining Process Simulation

Master Program: Manufacturing Technology (MMT)

Cycle: annual
Duration: 1 semester
Section of Study: 1st semester
Credits: 5
Workload: 150 h

1 Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machining Process Simulation</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
</tr>
</tbody>
</table>

2 Language of the course

English

3 Content

A detailed insight into machining processes is the most important precondition to understand their principle working mechanisms and, hence, to use this knowledge for their planning and optimization. For this reason, modeling and simulation approaches which are capable of deriving predictions for different process values are in the focus of this lecture. Today such process simulation systems are subject to research on the one hand but they are applied in industry to a certain extend as well, which is mainly driven by the availability of low cost computational power. This lecture deals with the modeling and simulation of machining processes (mainly turning and milling), focusing on the processes themselves. Starting with a definition and classification of different modeling methods such as analytical, empirical, finite-element-based and geometrical-physical, these methods are explained successively. Their working principles are outlined, but also restrictions and boundary conditions are discussed. Also, one or two systems are presented in live demonstrations.

4 Competence

The students get an overview of different existing modeling concepts for the simulation of machining processes. They have knowledge about the working principles of these models and of the realization of some of the models in software tools as well. With this knowledge, they are enabled to choose appropriate modeling concepts for the simulation of machining processes, with respect to accuracy, efficiency and reliability. In addition, they can assess the validity calculated simulation results.

5 Examination

Written exam

6 Form of the Examination and Ratings

☑ Module examination
☐ Partial performances

7 Prerequisites

None

8 Module Type and Usability of the Module

Elective module

9 Representative of the Module

Priv.-Doz. Dr.-Ing. Dipl.-Inform. Andreas Zabel

Responsible Faculty

Faculty of Mechanical Engineering (7)
Module 20: Topics in Manufacturing Technology

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 or 2 semester(s)</td>
<td>1st/2nd semester</td>
<td>5 or 10</td>
<td>150 h or 300 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Topics in Manufacturing Technology</td>
<td></td>
<td>5 or 10</td>
</tr>
</tbody>
</table>

Language of the course
English or German

Content
In the module „Topics in Manufacturing Technology“, any course offered by any department/university can be taken if the following requirements are fulfilled:
- The content must be manufacturing technology.
- Prior written approval of suitability of a course by the MMT Coordination is required for crediting.
- The module can be composed of different courses of different universities/departments.
- The module can only be completed with 5 CP or 10 CP.

Competence
Students acquire in-depth and advanced knowledge in one or several further fields of manufacturing technology according to their individual preferences.

Examination
Written exam, presentation, assignment, seminar, or oral exam. The type of exam is usually announced at the beginning of the elected element. The grade of the module is calculated by using the credit-point weighted average of the single courses. So, even though the total of the credit points of the single courses may amount to more than 5 or 10, the module will only be credited with 5 CP or 10 CP, respectively.

Form of the Examination and Ratings
- Module examination
- Partial performances

Prerequisites
None

Module Type and Usability of the Module
Elective module

Representative of the Module
Dependent on the examiner

Responsible Faculty
Faculty of Mechanical Engineering (7)
Module 22: Basics of Materials and Technology (MMT)

Master Program: Manufacturing Technology (MMT)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
<th>Section of Study</th>
<th>Credits</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual</td>
<td>1 semester</td>
<td>1st semester</td>
<td>5</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Module Structure

<table>
<thead>
<tr>
<th>No.</th>
<th>Element/Course</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics of Materials and Technology</td>
<td>L(2,5)+E(1)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40h in course, 110h self-study</td>
<td></td>
</tr>
</tbody>
</table>

Language of the course

English

Content

The optional subject “Basics of Materials and Technology” offers MA students the opportunity to refresh and to strengthen their knowledge within the field of materials engineering and materials technology. The course is centered on the structures of metallic, inorganic, and organic materials, their properties as well as their processing and fields of application. The focus is on the material-specific mechanical and chemical parameters as well as on diffusion- and corrosion mechanisms. Additionally to steel, other metallic and non-metallic materials are going to be investigated. A practical section involves the students, who have to independently select materials for a specific application within the context of a case study. The course will also provide fundamental insights into the field of material testing and material analysis.

Competence

After successful participation in this module, students have a fundamental knowledge of metallic and inorganic materials, their characteristic properties and application areas. They gain a deeper understanding of materials, especially in view of the mechanical potential of different materials. Furthermore, they gain skills to evaluate the capability of the construction materials with an interdisciplinary approach and to choose the corresponding specifications according to the requirements.

Examination

Written Exam

Form of the Examination and Ratings

- ✗ Module Examination
- ✗ Partial performances (two partial performances)

Prerequisites

None

Module Type and Usability of the Module

Elective module

Representative of the Module

Prof. Dr.-Ing. Dipl.-Wirt.Ing. Wolfgang Tillmann

Responsible Faculty

Faculty of Mechanical Engineering (7)